| Sloan |
|---|
| (Penalties: 0) | | 1 | 74.348 [9] | | 2 | 29.519 [8] | | 3 | 28.995 [5] | | 4 | 49.967 [5] | | 5 | 28.785 [5] | | 6 | 28.762 [5] | | 7 | 28.72 [5] | | 8 | 29.842 [5] | | 9 | 70.086 [5] |
| | Lewis |
|---|
| (Penalties: 0) | | 1 | 74.876 [10] | | 2 | 27.932 [2] | | 3 | 68.929 [2] | | 4 | 29.973 [2] | | 5 | 30.616 [2] | | 6 | 32.551 [2] | | 7 | 30.792 [2] | | 8 | 68.337 [2] | | 9 | |
| | Sinclair Auto |
|---|
| (Penalties: 0) | | 1 | 59.897 [6] | | 2 | 29.488 [7] | | 3 | 52.095 [8] | | 4 | 30.352 [8] | | 5 | 30.257 [8] | | 6 | 32.555 [8] | | 7 | 30.781 [8] | | 8 | 70.417 [8] | | 9 | |
| | Fedix |
|---|
| (Penalties: 0) | | 1 | 53.605 [3] | | 2 | 29.212 [5] | | 3 | 30.394 [6] | | 4 | 49.824 [6] | | 5 | 29.271 [6] | | 6 | 29.562 [6] | | 7 | 29.208 [6] | | 8 | 29.586 [6] | | 9 | 67.707 [6] |
| | Tevai Terry |
|---|
| (Penalties: 0) | | 1 | 53.032 [1] | | 2 | 29.453 [6] | | 3 | 51.421 [7] | | 4 | 29.362 [7] | | 5 | 29.888 [7] | | 6 | 32.071 [7] | | 7 | 30.919 [7] | | 8 | 64.002 [7] | | 9 | |
| | Miaka Kenny |
|---|
| (Penalties: 0) | | 1 | 73.978 [8] | | 2 | 28.626 [4] | | 3 | 29.225 [4] | | 4 | 50.824 [4] | | 5 | 29.104 [4] | | 6 | 29.003 [4] | | 7 | 28.732 [4] | | 8 | 29.065 [4] | | 9 | 69.211 [4] |
| | Sam |
|---|
| (Penalties: 0) | | 1 | 73.066 [7] | | 2 | 28.376 [3] | | 3 | 29.499 [3] | | 4 | 48.119 [3] | | 5 | 30.547 [3] | | 6 | 28.167 [3] | | 7 | 28.128 [3] | | 8 | 29.194 [3] | | 9 | 67.268 [3] |
| | Wyatt Jardine |
|---|
| (Penalties: 0) | | 1 | 56.939 [5] | | 2 | 30.551 [9] | | 3 | 51.68 [9] | | 4 | 30.206 [9] | | 5 | 30.029 [9] | | 6 | 32.143 [9] | | 7 | 32.304 [9] | | 8 | 68.053 [9] | | 9 | |
| | Relic Jardine |
|---|
| (Penalties: 0) | | 1 | 53.42 [2] | | 2 | 27.549 [1] | | 3 | 27.935 [1] | | 4 | 48.402 [1] | | 5 | 28.142 [1] | | 6 | 28.225 [1] | | 7 | 28.21 [1] | | 8 | 28.963 [1] | | 9 | 65.654 [1] |
| | Alex Young |
|---|
| (Penalties: 0) | | 1 | 54.619 [4] | | 2 | 30.704 [10] | | 3 | 51.808 [10] | | 4 | 31.107 [10] | | 5 | 31.176 [10] | | 6 | 31.376 [10] | | 7 | 31.453 [10] | | 8 | 71.602 [10] | | 9 | |
|